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Abstract 

Gabor Wigner Transform (GWT) is a composition of two time-frequency planes (Gabor Transform (GT) and 
Wigner Distribution (WD)), and hence GWT takes the advantages of both transforms (high resolution of WD 
and cross-terms free GT). In multi-component signal analysis where GWT fails to extract auto-components, the 
marriage of signal processing and image processing techniques proved their potential to extract auto-
components. The proposed algorithm maintained the resolution of auto-components. This work also shows that 
the Fractional Fourier Transform (FRFT) domain is a powerful tool for signal analysis. Performance analysis of 
modified fractional GWT reveals that it provides a  solution of cross-terms of WD and blurring of GT.  
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1. Introduction 
 

Time representation of a one-dimensional signal lacks the frequency description of the 
signal. On the other hand, the Fourier Transform (FT) of the signal cannot describe how the 
spectral content of the signal alters with respect to time. Therefore a  time variable is induced 
in FT to obtained information about the changes of spectral content of a signal with respect to 
time. Hence, the basic goal of a time-frequency representation (TFR) is to find out the energy 
concentration along the frequency axis at a given time [1, 2].   

A TFR is a two-dimensional function which provides simultaneously, temporal and 
spectral information and therefore is used to analyze the non-stationary signals (seismic 
signals, radar signals, voice communication signals, biomedical signals, etc.). It provides the 
information which is unavailable in time or frequency representation alone. Time frequency 
representations (TFRs) provide information such as auto-components (liner chirp, quadratic 
chirp, sinusoid and Gaussian atom etc.) in the signal, their time duration and frequency bands 
over which these components are defined and their relative amplitudes [3, 4].  

TFRs are classified as Linear TFRs and Quadratic TFRs. Linear TFRs (short time Fourier 
Transform, Gabor Transform (GT), wavelet transform, etc.) obey the principle of 
superposition. Linear TFRs offer no cross-terms but have low resolution of auto- 
components. Quadratic TFRs (Wigner Distribution (WD), S-method, etc.) offer better 
resolution of auto-components but have cross-terms [1, 5]. This discussion shows that there is 
no unique TFR that tackles all possible applications. The choice of a particular TFR depends 
on specific application at hand. However, TFRs have proved themselves to be the key to 
successful extraction and classification of signals in numerous applications. TFRs are often 
compared in terms of their ability to suppress cross-terms, resolution performance and 
mathematical properties [4]. 
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WD is the most popular quadratic TFR [6, 7] and shows its high resolution property for 
analysis of a linear chirp signal  and a Gaussian atom, while in case of a quadratic component 
and multiple components, WD has a cross terms problem [5, 8]. Nice mathematical properties 
of the WD like infinite time and frequency resolutions (there is no window in (3)), 
preservation of time and frequency support and more, made WD a powerful tool for analysis 
of signals [7, 9]. Similarly WD has the drawback of its quadratic nature and introduces the 
cross-terms which makes difficult to visualize the time-frequency plane [10]. Different 
variants of WD were proposed to eliminate its cross-terms [11, 12].  

A non-linear filtering technique was proposed in [13] to reduce cross-terms of WD. This 
technique is based on intuition that auto-terms dominant regions have significantly less 
variation as compared to cross-terms dominant regions. Thus in regions of low variation the 
proposed nonlinear filter converts itself close to identity operator while in regions of cross-
terms it becomes a low pass filter. This non-linear filter performs better than kernel-based 
techniques but in regions where cross-terms overlap auto-components this technique fails to 
give optimum results. 

Fractional Fourier Transform (FRFT) and signal synthesis based recursive technique to 
eliminate cross-terms of WD without affecting auto-components resolution were proposed in 
[14]. This method performs well in highly challenging situations i.e. when auto-components 
overlap cross-terms. This technique exploits the mismatch of fractionally rotated and aligned 
back WDs to detect cross-terms. The iterative nature of this method limits its scope for 
parallel implementation and also its computational cost is high. 

Image processing techniques and FRFT can be used for cross-terms suppression of WD 
[15]. This technique uses the support vector machine for classification of auto-components. 
Auto-components of a multi-component signal are isolated in the FRFT domain. The main 
drawback of this method is auto-component’s discontinuity due to image segmentation.  

A non-linear morphological filters based technique to eliminate cross-terms of WD was 
proposed in [16]. In this method a marker is obtained through a spectrogram which is used 
for morphological analysis of WD. This technique preserves auto-component’s resolution. 
This non-linear morphological filter fails to give optimum results where auto-components 
overlap cross-terms. 

The main feature of WD is its high resolution property of auto-components during the 
analysis of mono-component signals. But WD has cross-terms in case of quadratic and multi-
component signals. The main feature of the GT is its linearity property but it has less 
resolution of auto-components than WD. For achieving the goals such as (i) high 
concentration of auto-components and (ii) elimination of the cross-terms, it is necessary to 
combine excellent features of both WD and GT [17-19].  

In this research, a modified fractional GWT has been developed by marriage of signal 
processing and image processing techniques. The proposed method is applied to analyze 
multi-component signal’s components extraction and to tackle the resolution problem faced 
by GT. This work has shown that modified fractional GWT  combines the advantages of the 
GT and the WD. Performance analysis shows that the proposed method has high resolution of 
auto-components as compared with other TFRs.  

The paper is organized as follows. The theoretical background relevant to the present work 
is presented in Section 2 and Section 3. An algorithm for modified fractional GWT is 
described in Section 4. Performance analysis of modified fractional GWT is described in 
Section 5. Section 6 concludes the paper. 
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2. Gabor Wigner Transform 
 

Short time Fourier Transform (STFT) [5, 6], the simplest TFR, has been introduced for 
better time localization of the frequency contents of a signal by using a suitable window. By 
using the STFT we can observe how the frequency of the signal changes with time. It 
multiples the signal with a symmetric sliding window,( )w t τ−  and then transforms it to the 
frequency domain. The STFT of a signal( )x t  is defined as: 

 
( , ) ( ) ( )exp( )xSTFT t x w t j dω τ τ ωτ τ

∞

−∞

= − −∫ .
 

(1) 

 

In implementation of STFT the choice of the window function is very important. A wide 
window provides high frequency resolution while a narrow window has high time resolution. 
Once the analysis window has been chosen, the resolution is set for both time and frequency. 
We cannot have a function that has an arbitrary short time duration and narrow frequency 
bandwidth at the same time. According to Uncertainty principle it is impossible to get both 
frequency and time resolution at the same time [20]. However the Gaussian window achieves 
an optimal joint time-frequency concentration with maximum possible resolution in both 
domains. 

The STFT with Gaussian window is called a Gabor Transform [17, 21]. The main feature 
of the GT is linearity but GT has less resolution of auto-components than WD. The GT does 
not have the cross-term problem. Mathematically GT of ( )x t  is defined as, 

 

2( ) 2 ( 2)1
( , ) ( ) ( )

2
t j t

xGT t e e x dτ ω τω τ τ
π

∞
− − − −

−∞

= ∫ .
 

(2) 

 
WD is the most popular TFR [6, 7]. Mathematically, WD of a signal ( )x t  is defined as: 

 
( , ) ( 2) ( 2) j

xWD t x t x t e dωτω τ τ τ
∞

∗ −

−∞

= + −∫ ,
 

(3) 

where ( )x t∗ is the complex conjugate of( )x t . WD is not linear since  

 1 2
( , ) ( , ) ( , )x x xWD t WD t WD tω ω ω≠ + , (4) 

where 

 1 2( ) ( ) ( )x t x t x t= + . (5) 
 

Consider a signal( )x t which consists of M auto-components  
 

 1

( ) ( )
M

i
i

x t x t
=

=∑ . (6) 

The WD of ( )x t  is given by 
 

 

1

1 1 1

( , ) ( , ) 2Re(( ( , ))
i k l

M M M

x x x x
i k l k

WD t WD t WD tω ω ω
−

= = = +

= +∑ ∑ ∑ . (7) 
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Equation (7) shows that the WD of the multi-component signal ( )x t  has M auto-
components and ( 1) / 2M M −  cross-components. The properties of cross- terms are defined 
in [22]. 

The combination of GT and WD is called a Gabor Wigner Transform (GWT) [17-19]. 
Mathematically:   
 

 ( , ) ( , ) ( , )x x xGWT t GT t WD tω ω ω= , (8) 

 

 
2

( , ) min{ ( , ) , ( , )}x x xGWT t GT t WD tω ω ω= , (9) 

 

 
( , ) ( , ){ ( , ) 0.25}x x xGWT t WD t GT tω ω ω= > , (10) 

 

 
2.6 0.6( , ) ( , ) ( , )x x xGWT t GT t WD tω ω ω= . (11) 

 
Equations (8, 9, 10 and 11) show that there is no unique definition of GWT and choice of 

GT and WD is critical in order to extract strengths of GT and WD. However different 
combinations of GWT are only applicable for slowly time-varying signals but fail in case of 
amplitude-varying time signals as shown in examples 1 and 2.  
 
3. Fractional Fourier Transform 
 

FT is one of widely used tools in signal processing [21, 23]. The Fractional Fourier 
Transform (FRFT) was introduced in [24] and is a generalization of FT. FRFT has 
established itself as a powerful tool for the analysis of time-varying signals in a very short 
span of time [25]. FRFT has many applications in filter design, pattern recognition, 
communication [16, 26, 27] and TFRs [12], etc. FRFT can be used in applications where FT 
fails to work and its cost of implementation is also low. Windows can be analyzed using 
FRFT [27]. FRFT can be used for detection of cross terns in WD [14]. FRFT can isolate 
signal components from a multi-component signal [15]. Mathematically, FRFT [26] of a 
signal ( )x t is defined as   

 
( ) ( , , ) ( )X u K t u x t dtα α

∞

−∞

= ∫ , (12) 

where 2aα π=  and ( , , )K t uα  is a kernel function defined as 

 

2 2 2( )cos 2
( , , )

sinsin

j
je t u tu

K t u e
j

α
π αα

αα
+ −= . (13) 

Following are the most important characteristics of FRFT : 
1. FRFT becomes FT when 2α π= . 
2. FRFT with 0 2orα α π= =  is equal to an identity operation. 
3. (0 2 )α π< <  corresponds to rotation of the time-frequency plane. 
4. FRFT is linear, commutative and associative. 

In signal analysis a wider window is used to filter a pure sinusoidal signal, while on the 
other hand to filter a delta pulse a narrower window is needed. When the signal does not 
match  the time or the frequency direction, we rotate the time–frequency plane by taking the 
FRFT of the signal. The reason of this signal rotation is to find out an appropriate 
concentration of auto-components [28].  
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The rotation of the time-frequency plane by angle α   in transformed coordinates ( , )u v is 
described as: 

 

cos sin

sin cos

t u

v

α α
ω α α

−    =    
    

. (14) 

Now the relationship for the FRFT kernel: 

 
2 2( , , ) [ ( , , ) ]o o

j tj u v j tj uv
o o o oK t u u e e K u t t e e

ω
π ωπα α

−− ∗− = − − . (15) 

Clockwise rotation of WD, GT and GWT is equal to FRFT of these distributions [3, 20]. 
Mathematically: 

 ( , ) ( cos sin , sin cos )x xWD u v WD u v u v
α

α α α α= − + , (16) 

 ( , ) ( cos sin , sin cos )x xGT u v GT u v u v
α

α α α α= − + , (17) 

 
( , ) ( cos sin , sin cos )x xGWT u v GWT u v u v

α
α α α α= − + . (18) 

Equations (16, 17 and 18) show that FRFT has a relation with GWT, WD and GT. FRFT, to 
design a filter [17], is given as: 

 
( ) { [ ( )] ( )}r t O O x t H uX X

α α−= , (19) 

 
where ( )x t and ( )r t are the filter’s  input and the output, and ( )H u  is the transfer function. 
For more than oneα , (19) can be written as 

 
1 1( ) { [ ( )] ( )}1 1x t O O x t H u

X X

α α−
= , 

 

 
2 2( ) { [ ( )] ( )}2 1 2x t O O x t H uX X

α α−
= , 

 

 
1 1( ) { [ ( )] ( )}1 2 1

n nx t O O x t H uX Xn n n
α α− − −=− − − , 

 

 
( ) { [ ( )] ( )}1

n nr t O O x t H unX nX

α α−= − . (20) 

 

Equation (20) tells that the choice of nα  is critical in FRFT domain for successful elimination 

of noise.  
To design a filter in the fractional domain, two important parameters are: 

1) Rotation angle α [15, 17]. 
2) Selection criteria for cutoff lines [15, 17].  
 
4. Modified Fractional GWT 
 

The objective of this work is to propose a TFR which should preserve the quality of auto-
components for multi-component dynamic signals and suppress the cross-terms. For this 
purpose a proper combination of linear and quadratic TFRs such as GT and WD is designed 
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which can achieve better results as compared to already proposed definitions of GWT. Steps 
of the proposed method are given as: 
Step 1.  Transform the given signal ( )x t  in 2D using (2). 
Step 2. Adaptive thresholding and image segmentation (8-connectivity criterion) of the 
process performed in step 1 [29]. The steps for adaptive thresholding are  
(i). Compute ( , )xGT t ω  of the signal ( )x t  and its mean value T , where  

 
 ( , )xT meanof GT tω= . (21) 

 
(ii). Classify the transformed data into two classes ( , )AGT t ω and ( , )BGT t ω  as 

 

 ( , ) ( , ) ( , )A x xGT t GT t if GT t Tω ω ω∈ ≥ , (22) 

 

 ( , ) ( , ) ( , ) <B x xGT t GT t if GT t Tω ω ω∈ . (23) 

 
(iii). Compute averages of ( , )AGT t ω and ( , )BGT t ω  and update T as  

 

 

( , ) ( , )

2
A BGT t GT tT ω ωµ µ+

= . (24) 

 

T  is updated in each iteration. WhenT does not change in two consecutive iterations, then 
iterations are terminated. 

(iv). Choose      
 

 
{ 0 ( , )

( , )
1

x
x

if GT t T
GT t

otherwise

ω
ω

≤
= . (25) 

 

Step 3. Classification of auto-components by support vector machine (SVM) of the process 
performed in step 2 [15, 30]. The location and slope of the classification line will determine 
two important parameters (cut-off lines and rotation order) for filtering in FRFT domain  
[15, 17]. 
Step 4. Isolation of auto-components in FRFT domain, using step 3 [14, 15]. 
Step 5. Compute GT and WD of isolated auto-components, using step 4. 
Step 6. Compute GWT using the following relation. 
 

 
0.5( , ) ( , ) ( , )x x xGWT t GT t WD tω ω ω= , (26) 

 

 
( , ) ( , )

kx x
k

TFR t GWT t wherek noof auto componentsω ω= = −∑ . (27) 

 
4.1. Numerical simulations 
 

To show the strength of modified Fractional GWT two examples are considered, (i) three 
quadratic components and a Gaussian atom, (ii) amplitude varying bat signal [23]. In both 
examples, auto-components overlap in frequency or in time, and they are also buried in 
interferences. Thus, these particular case studies show the challenging task to isolate auto-
components from cross-terms in case of WD. 
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4.1.1. Example 1 
 

( )

3 3

3 2

( ) 0.2exp( 2 (7 55 )) 0.5exp( 2 (7 35 ))

0.9exp( 2 (7 15 )) 0.7exp( 2 (70 ))exp( 15 ). 28

x t j t t j t t

j t t j t t

π π
π π

= − + + − + +
− + + − −

 
Consider (28), the example of a three quadratic components with time-varying amplitude 

and a Gaussian atom as shown in Fig. 1 (sampling frequency = 200 Hz, time duration = -1 to 
1 seconds). The quadratic nature of WD produces cross-terms (Fig. 1 a). Analysis of this 
signal through GT shows that it provides cross-term elimination property of GT but auto-
components are blurred (Fig. 1 b). The behavior of different variants of GWT (8, 9, 10, and 
11) represent issues of readability and missing of auto-components (Fig. 1 c, d, e, f). By 
applying the proposed algorithm step by step it proved itself as a powerful tool for analysis of 
a multi-component signal (Fig. 1 g). It provides cross-term elimination property of GT and 
high resolution property of WD. It extracts successfully all auto-components and gives highly 
readable TFR. This example also proves that the marriage of signal processing and image 
processing techniques successfully removes the cross- terms of WD and gives high resolution 
TFR (as shown in Table 1 and 2). 
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Fig. 1. Analysis of a three quadratic and a Gaussian atom (a) WD, (b) GT, (c) GWT (Eq. 8), (d) GWT (Eq. 9), 
(e) GWT (Eq. 10), (f) GWT (Eq. 11) and (g) Modified Fractional GWT. 
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Fig. 2. Analysis of a bat  signal (a) WD, (b) GT, (c) GWT (Eq. 8), (d) GWT (Eq. 9), (e) GWT (Eq. 10), (f) GWT 

(Eq. 11) and (g) Modified Fractional GWT. 
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4.1.2. Example 2 
 

Consider the example of a real life bat signal [31]. This signal is commonly used for 
comparison of TFRs. Analysis of the bat signal through the proposed fractional GWT shows 
that it provides the cross-term elimination property of GT and high resolution property of 
WD and extracts all auto-components (Fig. 2 g), whereas variants of GWT (Fig. 2 c, d, e, f) 
miss two auto-components. GT suffers from blurring (Fig. 2 b).  
 
5. Performance Analysis  
 

In literature TFRs are compared on the basis of their readability, cross-terms suppression, 
resolution and energy concentration. Cross-terms suppression and energy concentration of a 
TFR is evaluated by visual inspection or on the basis of quantitative measures like entropy 
measures and ratio of norms. 

Entropy is used to compute information. Renyi entropy [32] of a TFR (( , )Q n ω ) is defined 
as: 

 
Re 2

1
log ( ( , ))

1nyi
n

Entropy Q nα

ω
ω

α
=

− ∑ ∑ , (29) 

 
where α  is the order of entropy. We have taken its value to be equal to 3, in order to make 
the above mentioned measure energy unbiased. In case of TFRs, high entropy means lower 
energy concentration of auto-components; whereas low entropy stands for high concentration 
of auto-components. 

Ratio of norms divides the fourth power norm of a TFR (( , )Q n ω ) by its second power 
norm [33]. Mathematically 

 

4

2 2

( , )

( ( , ) )

n

n

Q n
Ratioof norms

Q n

ω

ω

ω

ω
=
∑ ∑

∑ ∑
. (30) 

 
Higher value of ratio of norms implies that signal auto-components are highly 

concentrated [33].  
 

Table 1. Comparison of modified fractional GWT with other TFRs based on ratio of norms. 
 

Performance measure on the basis of Ratio of Norms (x10-3) 

S.No. Test signal WD GT GWT (Eq.8) GWT (Eq.9) GWT (Eq.10) GWT 
(Eq.11) 

Modified 
Fractional 
GWT 

1 3 quadratic 
components and 
a Gaussian atom 

0.0261 0.0219 0.1599 0.0835 0.0849 0.1849 0.2489 

2 Bat signal  0.4 0.2 1.5 0.8 0.9 1.4 1.6 

 
The performance of the proposed method is evaluated on the basis of quantitative measures 
like entropy measures and ratio of norms. The proposed method has a maximum value for 
ratio of norms for both signals as shown in Table 1 and minimum value of entropy as shown 
in Table 2. Therefore the proposed GWT shows good energy concentration property as 
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compared to other TFRs. Hence our analysis shows that the proposed GWT provides 
advantages of both WD and GT and also gives the solution of cross-terms of WD. 
 

Table 2. Comparison of modified fractional GWT with other TFRs based on entropy. 

Performance measure on the basis of Entropy 

S.No. Test signal WD GT GWT 
(Eq.8) 

GWT (Eq.9) GWT(Eq.10) GWT(Eq.11) Modified 
Fractional 
GWT 

1 3 quadratic 
components and 
a Gaussian atom 

16.2640 16.1286 14.2950 14.5171 14.8538 15.8530 13.5344 

2 Bat signal  13.2170 13.6101 10.7382 11.1182 11.3310 12.2310 10.3854 

 
6. Conclusion 
 

In this paper, the advantages of GWT are analyzed in the FRFT domain for multi-
component signals. In our proposed technique, we introduce a novel strategy to eliminate 
cross terms with minimal distortion in the auto-components through the FRFT domain. The 
marriage of signal processing and image processing techniques successfully removes the 
cross- terms of WD and gives high resolution TFR. Performance analysis of the proposed 
method reveals that it provides the  solution of cross-terms of WD and resolution problem of 
GT and defines further direction of research in this topic. 
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